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Abstract

Heart rate (HR) is known to be influenced by the emo-
tional state of the subject and is commonly used as a proxy
indicator of stress. The most common way humans interact
is through conversation, which can be labeled as sympa-
thetic when both participants agree on ideas, and antipa-
thetic when they are in disagreement.

A group of 38 participants were invited to engage in con-
versation with a colleague while their ECG signals were
synchronously recorded using a g.USBamp system, with
separate grounds and reference electrodes for each partic-
ipant. Subjects were randomly assigned to either a sympa-
thetic or antipathetic conversation, based on a preliminary
interview with a moderator to balance both types. Each
conversation lasted approximately twenty minutes, from
which both HRV signals were obtained via standard inter-
polation methods and R-peak detection. Four connectiv-
ity metrics were estimated from each HRV pair: Weighted
Phase Lag Index (WPLI), Phase Locking Value (PLV),
Coherence (Coh), and Phase Lag Index (PLI). Statistical
comparisons were conducted for each metric, showing sig-
nificance in the expected direction for WPLI and Coher-
ence (p < 0.05). Due to the limited sample size, a per-
mutation analysis with 10,000 iterations was performed,
yielding significance (p < 0.05) for Coherence only.

This experiment demonstrates that HR is modulated by
conversational dynamics and reinforces its use for evalu-
ating human interactions.

1. Introduction

Sciences based on the study of behavior, such as educa-
tion or psychology, aim to find better ways to explain hu-
man interactions. In recent years, the term affective com-
puting has become popular as one of the areas that seeks to
translate knowledge of human behavior into computer sys-
tems that help evaluate it and, in some cases, make use of
this information, which is often considered subjective and
lacking reproducibility [1]. That is why objective indices
such as physiological signals are used to better understand
these processes.

Previous studies such as those by Descorbeth et al. [2]
use near-infrared spectroscopy (fNIRS) signals to evaluate
brain region activation during dialog tasks between two in-
dividuals. In that study, pairs were formed into two groups
with high and low socioeconomic disparity. The conver-
sation in that experiment was guided by the experimenter,
such that each participant had listening and speaking peri-
ods, greatly limiting the exchange of ideas. The results of
that experiment indicate that the social context alters the
activation regions of the cerebral cortex, primarily during
listening. Pérez et al. [3] conducted a study where a group
of people were asked to listen to the same story while their
cardiac signals were recorded during the session. The sub-
jects in this study participated on different days and had
no interaction other than listening to the same story. The
analysis carried out in this work consisted of aligning the
recordings and evaluating the synchronization of heart rate
among all subjects. It was reported that for those who paid
attention, a greater synchronization of heart rate was iden-
tified. This could be due to the fact that the story itself and
the empathy it generated modulate the listeners’ heart rate.

Animal studies have further demonstrated that brain
structures involved in emotional regulation also influence
cardiovascular function. Miller [4] reviewed evidence
from hominid models showing that damage or removal of
the amygdala results in altered social behavior and changes
in heart rate. Human studies have also revealed associa-
tions between amygdalar function, emotional expression,
and cardiac dynamics [5]. Moreover, recent work has
emphasized the bidirectional interactions between corti-
cal activity and autonomic mechanisms underlying home-
ostatic regulation [6, 7]. These investigations support the
notion that cortical processes can modulate autonomic out-
puts—such as heart rate variability (HRV)—and that auto-
nomic signals can, in turn, influence cortical activity.

Given this complex interplay, studying processes that
modulate emotional states—such as social interaction—is
valuable not only for advancing our understanding of
brain–body dynamics but also for fostering interdisci-
plinary applications in fields such as education and psy-
chology.
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2. Methods and Materials

2.1. Data

A total of 38 participants were invited to engage in
a conversation with a colleague while their ECG signals
were synchronously recorded. All conversations were
video-recorded for future analysis. Participants were ran-
domly assigned to either a sympathy or antipathy inter-
action, based on a preliminary interview with a moderator
to ensure balanced assignment across conditions. Moder-
ator also guarantees that each conversation last at least 20
minutes and no longer than 30. After validating records a
total of eight conversation were marked as antipathy and
eleven as sympathy.

Each participant signed an informed consent form and
was free to withdraw from the experiment at any time.
The study was approved by the university’s ethics com-
mittee under Folio 256 and conducted in accordance with
the principles of the Declaration of Helsinki. All personal
data were anonymized, and participants’ identities were
protected to ensure data privacy and confidentiality.

ECG signals were acquired using a g.USBamp amplifier
system (g.tec, Austria, 2019) at a sampling rate of 512 Hz.
A Butterworth band-pass filter with a frequency range of
0.1–100 Hz was applied during acquisition. The amplifier
supports up to four independent ground systems; for each
participant, three electrodes were placed as follows: the
right clavicle (active), the left clavicle (reference), and the
left ischium (ground).

2.2. Signal Processing

For HRV extraction R peaks were detected in each chan-
nel by following procedure: signals were filtered using a
third order chebyshev filter tuned between 5 to 20 Hz; af-
ter that R peaks occurrence were marked using engzee seg-
menter algorithm implemented on byosppy python module
[8]; finally R peaks were manually corrected by authors.
Analysis time was selected from latest first beat to earliest
last of any subject. Each HRV was then obtained by inter-
polating at 0.1 s in between these times as shown on Fig. 1.
The use of a single amplifier and same time vector ensures
that both signals are aligned which is an essential condition
for analysis. Once HRV signals are obtained connectivity
metrics between signals were assessed.

2.3. Connectivity Metrics

The working hypothesis yields that HRV signals from
subjects during sympathetic conversation will achieve
larger values on connectivity metrics. In this work, four
metrics were used:

Figure 1. Analysis time definition for signal processing.
HRV signals were interpolated from Latest first peak to
Earliest last peak. In this example both time marks cor-
responds to the same subject, but it is not a rule in every
recording.

Figure 2. Example of 400 s of HRV signals after interpola-
tion resampling. This is from a sympathetic conversation.

Coherence (COH) [9] Is a ratio between between ex-
pected value of the cross spectrum between square root of
individual spectra, it measure synchrony between both sig-
nals.
Phase Lag Index (PLI) [10] Measure asymmetry between
signals ranging from 0 for a complete random phase dif-
ference to 1 for a consistent phase difference.
Weighted Phase Lag Index (WPLI) [11] It is an improved
method that reduces false synchrony detection induced by
noise.
Phase Locking-Value (PLV) [12] It is a similar measure to
evaluate synchrony based on spectrum, but it is focus on
phase different from COH that also considers amplitude .

These indices assume that the signals exhibit synchrony,
quantified through frequency-based connectivity metrics.
Therefore, it is essential that the signals share a common
time vector—a condition ensured by the applied signal
processing methods. Figure 2 presents an example of syn-
chronized HRV signals used for the evaluation of connec-
tivity metrics.

Finally for statistical analysis, given the low number of
conversations in each group, a non-parametric permutation
analysis was performed over 10,000 iterations using the
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Mann–Whitney U test applied to the group medians. This
procedure was conducted for each of the four indices, and
the corresponding p-values were computed.

3. Results

Table 1 presents the numerical values for each of the
assessed connectivity metrics, expressed as mean and stan-
dard deviation (in parentheses). In addition to the permuta-
tion analysis, a standard two-sample t-test was performed
between groups, and the corresponding results are also re-
ported in the table.

Notably, the mean values for the sympathy group were
higher across all metrics compared to the antipathy group.
However, the standard deviations were consistently larger
in the antipathy group, indicating greater variability.

While both WPLI and COH yielded values approach-
ing 1, PLV and PLI produced values closer to 0, suggest-
ing weak or absent connectivity between signals. These
results may be attributed to the influence of interpolation
artifacts and the high sensitivity of PLV and PLI to noise.
Moreover, these metrics are known to be affected by non-
stationarities, which are inherent to HRV signals.

index sympathy antipathy p-value
WPLI 0.918 (0.018) 0.644 (0.377) 0.021*
PLV 0.197 (0.033) 0.179 (0.059) 0.897
COH 0.916 (0.024) 0.681 (0.275) 0.034*
PLI 0.023 (0.005) 0.020 (0.003) 0.122

Table 1. Mean values for each of the four connectiv-
ity metrics estimated. In each cell mean value and stan-
dard deviation in parenthesis are presented. Fourth col-
umn show p-value for a simple t-test comparison between
groups and marked with an asterisk (*) which obtained
p < 0.05.

The permutation-based statistical analysis revealed that
only COH (p = 0.0176) and WPLI (p = 0.05) showed
significant differences between groups, which is consistent
with the results from the simple group comparison. Fig-
ure 3 illustrates the distribution of these metrics, highlight-
ing that some conversations in the antipathy group still
reached values close to 1 for both COH and WPLI. This
observation is noteworthy, as it suggests that even in con-
texts of disagreement, physiological signals may exhibit
synchrony or connectivity.

4. Discussion and Conclusions

The connectivity analysis suggests that social interac-
tion may modulate the physiological processes involved in
heart beat occurrence. This modulation could be linked
to respiratory dynamics, as the experimental setting fo-

Figure 3. Boxplots of connectivity metrics WPLI (left)
and COH (right). These distributions are shown because
achieved a p < 0.05 on simple test. Permutation analysis
achieved p < 0.05 only for COH.

cused on spoken conversations. During dialogue, speak-
ers typically alternate turns, resulting in rhythmic patterns
of inhalation and exhalation. Interestingly, this turn-taking
behavior may persist even during disagreement, such as
in debates or conflicts, where participants still take turns
speaking—potentially maintaining some degree of physi-
ological synchrony. However, in other forms of disagree-
ment, particularly when individuals disengage or ignore
each other, this coordination may break down. Such vari-
ations could explain the broader range and lower average
connectivity values observed in the antipathy group. A
more detailed analysis of each conversation is necessary to
clarify and support these hypotheses.

Previous studies using fNIRS signals have shown that
certain cortical areas become synchronized during listen-
ing tasks [2]. These findings suggest that breathing is not
the primary driver of this synchrony; however, the experi-
mental conditions in those studies differ substantially from
the current work. An alternative explanation for the syn-
chrony observed in the HRV signals may involve the acti-
vation of cortical autonomic networks (CAN) or subcor-
tical structures such as the amygdala, which are known
to influence heart rate [5]. Nonetheless, confirming this
hypothesis would require more sophisticated experimental
designs and multimodal measurements.

In this study, the metrics employed are based on
synchrony between signals assessed through frequency-
domain analysis. Although these measures are more ro-
bust to noise than simple correlation, they primarily cap-
ture time-based synchrony. To better understand the direc-
tionality of interaction, additional analyses of causality are
needed—for example, to determine whether one HRV sig-
nal is driving or following the other. Extending such anal-
yses could offer valuable insights into larger-scale social
interactions, such as those occurring in classrooms or con-
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certs, where synchrony may emerge as a collective prop-
erty.

While the underlying causes of physiological synchrony
remain unclear, connectivity analysis based on HRV has
shown promise as an objective tool for assessing social
interaction. Although these metrics are commonly inter-
preted as reflecting connectivity, it is important to clar-
ify that they do not imply direct physical or psychological
linkage. Rather, they may reflect self-regulatory processes
within each individual, whereby autonomic activity—such
as heart rate—dynamically adapts in response to the ongo-
ing social context, leading to emergent synchrony between
interacting individuals.
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